Photopenic defects in gliomas with amino-acid PET and relative prognostic value: a multicentric ¹¹C-Methionine and ¹⁸F-FDOPA PET experience

Timothée Zaragori^{1, 2}, Angelo Castello³, Eric Guedj^{4, 5}, Antoine Girard⁶, Norbert Galldiks^{7, 8, 9}, Nathalie L. Albert¹⁰, Egesta Lopci³*, Antoine Verger^{1, 2}*

¹Université de Lorraine, Department of Nuclear Medicine and Nancyclotep Imaging Platform, F-54000 Nancy, France

²Université de Lorraine, IADI, INSERM U1254, F-54000 Nancy, France

³Nuclear Medicine Department, Humanitas Clinical and Research Hospital – IRCCS, Via Manzoni 56, Rozzano (MI), Italy

⁴APHM, Timone Hospital, Nuclear Medicine Department, Marseille, France

⁵Aix Marseille Univ, CNRS, Ecole Centrale Marseille, UMR 7249, Institut Fresnel, CERIMED, Marseille, France

⁶Department of Nuclear Medicine, Eugène Marquis Center, Rennes 1 University, Rennes, France

⁷Dept. of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany

⁸Inst. of Neuroscience and Medicine (INM-3), Research Center Juelich, Juelich, Germany

⁹Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Duesseldorf, Germany

¹⁰Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany

^{*} The two last authors equally contributed to this work

Corresponding author:

Timothée Zaragori

timothee.zaragori@univ-lorraine.fr

Médecine Nucléaire, Hôpital de Brabois, CHRU-Nancy, Allée du Morvan, 54500

Vandoeuvre-les-Nancy, France.

Tel: (+33) 3 83 15 39 09; Fax: (+33) 3 83 15 38 39

Word count: 2057

Running title: Photopenic defects in amino-acid PET

Compliance with Ethical Standards

Funding: None

Conflict of Interest: None

ABSTRACT

The aim is to explore the concept of photopenic defects in newly-diagnosed glioma patients

with the two widely-used ¹¹C-MET and ¹⁸F-FDOPA PET amino-acid tracers. Thirty-two ¹¹C-

MET and twenty-six ¹⁸F-FDOPA PET scans with amino-acid PET-negative gliomas were

selected in this European multicentric study. Out of these gliomas, 16 ¹¹C-MET and 10 ¹⁸F-

FDOPA PET scans with photopenic defects were identified, exhibiting lower TBR_{mean} as

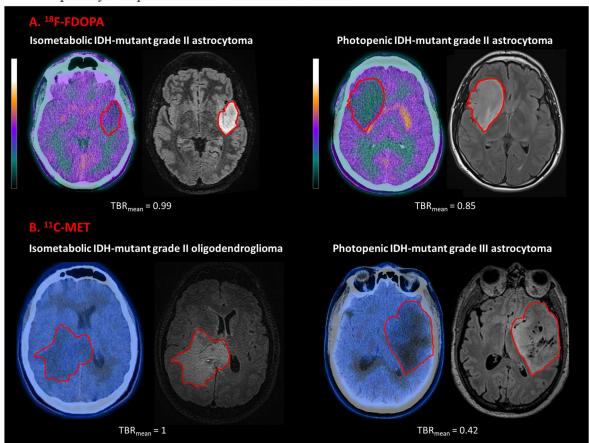
compared to isometabolic gliomas (p<0.001). Gliomas with photopenic defects had not

different progression-free-survival (PFS) than isometabolic gliomas in the whole-population

(p=0.40), but shorter PFS in the subgroup of WHO grade II IDH-mutant astrocytomas (35 vs.

68 months; p=0.047).

Key-words: glioma; ¹¹C-MET; ¹⁸F-FDOPA; photopenic; prognosis


3

FIGURE

	¹¹ C-MET	¹⁸ F-FDOPA	Total	p-value
WHO grade n (%)				0.22
II	25 (78)	18 (69)	43 (74)	
III	7 (22)	8 (31)	15 (26)	
WHO 2016 classification n (%)				0.05*
IDH-mutant astrocytoma	17 (53)	18 (69)	35 (60)	
IDH-wildtype astrocytoma	4 (13)	6 (23)	10 (17)	
IDH-mutant and 1p/19q co-deleted oligodendroglioma	11 (34)	2 (8)	13 (22)	
Photopenic defects n (%)	16 (50)	10 (38)	26 (45)	0.38

IDH: Isocitrate dehydrogenase; WHO: World Health Organization

*p<0.05 for comparison between ^{11}C -MET and ^{18}F -FDOPA

FIGURE LEGEND

In a recent publication, Galldiks and colleagues stated that gliomas with photopenic defects in a series of negative ¹⁸F-FET PET scans may have a more aggressive clinical course as compared to isometabolic gliomas [1]. Since the exact comparability of diagnostic and prognostic information provided by each amino-acid radiotracer remains to be specified [2], we wanted to explore whether the knowledge on photopenic defects in newly-diagnosed glioma patients could be extended to ¹¹C-MET and ¹⁸F-FDOPA PET scans, involving two other widely used amino-acid tracer [3-5]. Glioma patient characteristics of this multicentric study are presented in the upper part of the Figure. ¹⁸F-FDOPA PET scans were collected in Nancy, Rennes and Marseille centers (France) while ¹¹C-methionine PET scans were collected in Milan center (Italy). Informed consent was obtained from all individual procedures included in the study. The proportions of visually negatives gliomas (17% for ¹¹C-MET, 13% for ¹⁸F-FDOPA) and among them, photopenic defects gliomas (50% for ¹¹C-MET, 38% for ¹⁸F-FDOPA) were similar with those reported for ¹⁸F-FET (around 10% of negative gliomas and among them 40% with photopenic defects [1]). Representative examples of isometabolic and photopenic defects astrocytomas are shown in the lower part of the Figure with axial slices of amino acid PET scans (18F-FDOPA (A.) and 11C-methionine (B.)) and their respective tumor regions based on the signal alteration on fluid attenuated inversion recovery MR images (red contours). The semi-quantitative analysis comparison of isometabolic and photopenic defects gliomas confirmed that the latter had a significantly lower mean tumor-to-background ratios (p<0.001 for the whole-population and both radiotracers). This lower uptake might be related to a lower expression of L-type amino acid transporters which is consider as the main mechanism of ¹¹C-MET and ¹⁸F-FDOPA aminoacid radiotracers uptake [6,7]. Regarding survival in the 58 patients, photopenic defects gliomas on ¹¹C-MET or ¹⁸F-FDOPA PET reached no statistically significant difference in

progression-free-survival (PFS) compared to isometabolic gliomas (p=0.40). On the other hand, a subgroup analysis of WHO grade II IDH-mutant astrocytomas revealed that photopenic defects glioma patients (n=13) had a significantly shorter PFS than isometabolic gliomas (n=9) (35 vs. 68 months; p=0.047) which is in line with the results of Galldiks et al. for ¹⁸F-FET PET [1]. The photopenic gliomas might represent a transient state before the impeding transformation of the tumor [8] as observed in the follow-up of gliomas having beneficiated from a ¹⁸F-FET PET: a significant increased ¹⁸F-FET uptake, likely corresponding to a glioma transformation, happened earlier in photopenic in comparison to isometabolic WHO grade II IDH-mutant astrocytomas [9]. Overall, the presented results suggest that the concept of photopenic defects in glioma patients can be expanded to the ¹¹C-MET and ¹⁸F-FDOPA amino-acid tracers. Although occurring in apparently less aggressive gliomas, photopenic defects seem capable to delineate subgroups of patients with poorer outcome. A particular attention should be paid on patients with WHO grade II IDH-mutant astrocytomas exhibiting a photopenic defect since they appear to have a more aggressive clinical course.

REFERENCES

- 1. Galldiks N, Unterrainer M, Judov N, et al. Photopenic defects on O-(2-[18F]-fluoroethyl)-L-tyrosine PET: clinical relevance in glioma patients. Neuro-Oncol [Internet]. 2019 [cited 2019];21. Available from: https://academic.oup.com/neuro-oncology/advance-article/doi/10.1093/neuonc/noz083/5488073
- 2. Verger A, Taieb D, Guedj E. Is the information provided by amino acid PET radiopharmaceuticals clinically equivalent in gliomas? Eur J Nucl Med Mol Imaging. 2017;44:1408–1410.
- 3. Lopci E, Riva M, Olivari L, et al. Prognostic value of molecular and imaging biomarkers in patients with supratentorial glioma. Eur J Nucl Med Mol Imaging. 2017;44:1155–1164.
- 4. Ginet M, Zaragori T, Marie P-Y, et al. Integration of dynamic parameters in the analysis of 18F-FDopa PET imaging improves the prediction of molecular features of gliomas. Eur J Nucl Med Mol Imaging [Internet]. 2019 [cited 2019]; Available from: http://link.springer.com/10.1007/s00259-019-04509-y
- 5. Janvier L, Olivier P, Blonski M, et al. Correlation of SUV-Derived Indices With Tumoral Aggressiveness of Gliomas in Static 18F-FDOPA PET: Use in Clinical Practice. Clin Nucl Med. 2015;40:e429–e435.
- 6. Ono M, Oka S, Okudaira H, et al. Comparative evaluation of transport mechanisms of trans-1-amino-3-[¹⁸F]fluorocyclobutanecarboxylic acid and L-[methyl-¹¹C]methionine in human glioma cell lines. Brain Res. 2013;1535:24–37.
- 7. Youland RS, Kitange GJ, Peterson TE, et al. The role of LAT1 in (18)F-DOPA uptake in malignant gliomas. J Neurooncol. 2013;111:11–18.
- 8. Kamson DO. Hypometabolic gliomas on FET-PET Is there an inverted U-curve for survival? Neuro-Oncol [Internet]. 2019 [cited 2019]; Available from: https://academic.oup.com/neuro-oncology/advance-article/doi/10.1093/neuonc/noz122/5529276
- 9. Galldiks N, Verger A, Zaragori T, et al. Comment on "Hypometabolic gliomas on FET-PET Is there an inverted U-curve for survival?", Kamson 2019, Neuro-Oncology. Neuro-Oncol. 2019;